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COMPLETE SOLUTIONS OF A FAMILY 
OF QUARTIC THUE AND INDEX FORM EQUATIONS 

MAURICE MIGNOTTE, ATTILA PETHO, AND RALF ROTH 

ABSTRACT. Continuing the recent work of the second author, we prove that 
the diophantine equation 

fa((x)yV) = X4-ax3y-x2y2+ axy3+ y4 = 1 

for lal > 3 has exactly 12 solutions except when lal = 4, when it has 16 
solutions. If a = at(a) denotes one of the zeros of fa(x, 1), then for IaI > 4 we 
also find all -y E Z[ca] with 2[y]= 2[a]. 

1. INTRODUCTION 

Let a C Z and 

fa (Xy) X4-ax3y - x2y2+ axy3+ y = X(x-y)(x + y)(x-ay) 
+ 

y4. 

In a recent paper, Peth6 [8] proved that for 3 < lal < 100 and lal > 9.9 x 1027 the 
Thue equation 

(1) fa(x,y) = 1 

has only the following trivial solutions: (x, y) = (0, 1), (1, 0), (1, 1), (1,-1), 
(a, 1), (1, -a) except when lal = 4, in which case it has the four further solutions 

(2) ?(X, Y) ~(817),(71-8) if a =4, 
(2) +(X' y) = 1j81 -7) (7,8) if a = -4. 

Combining this result with new ideas and an extensive computer search, we prove 
in this paper 

Theorem 1. For lal > 3, equation (1) has only trivial solutions except for lal = 4, 
when it has the four nontrivial solutions given by (2). 

Several similar parametrized families of Thue equations have been studied re- 
cently. Apart from the result of Peth6 [8] and the references therein, we mention 
the papers of Mignotte and Tzanakis [6], Lee [4] and Thomas [9]. We also refer to 
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the paper of Mignotte [5], where he proved that for n > 4, n C Z, the diophantine 
equation 

x3- (n - 1)X2y - (n + 2)xy2 -_ = 1 

has only the trivial solutions (x, y) = (1, 0), (0, -1), (-1, 1). This is the first example 
where a parametrized Thue equation was completely solved. 

We mention that the method of proof of Theorem 1 is also applicable to other 
parametrized families of diophantine equations. For more details, see the Remark 
in ?4. 

We now give two applications of Theorem 1 . Let rq and r' be the zeros of the 
polynomial x2 - ax + 1, and let 

,rqn _,/n 
Rn - 

77- T 

for n C 2. Combining Theorem 1 with the proof of Theorem 4 of [8], we get 

Theorem 2. Assume that lal > 3 and 

4u2 + v2 = Z2 

with (u,v) = (Rn,Rn+l) or (Rn+l,Rn) and z C 2. Then n = 0, 2 or -3 except 
when lal = 4, in which case (n, u, v) = (4,56,15), (-5,-56,-15). 

To formulate the next results, we need to introduce some notation. Let a, b C Z, 
a > 0, and f(x) = fa,b(x) = X4 -ax3 -bx2 + ax + -. Denote by a = a (a, b) one of 

the zeros of fa,b(x) and put E = E(a, b) = a - . Since ae is a unit, E is an algebraic 
integer. Let K = Ka,b = Q(ca(a, b)) and (9 = a,b = 2[ca(a, b)]. Then (9 is an order 
in IK. By ([8, Lemma 2.1]) the degree of 1K over Q is 4 if and only if E is a quadratic 
algebraic number, i.e., a2 + 4b -8 is not a square of an integer. In the sequel we 
assume [IK: Q] = 4. We shall prove in Lemma 2 that 1, e, a, ae is an integral basis 
of 0. In order to state our results, it is more convenient to consider this basis than 
the natural basis 1, ac, I2a a&. We have 

Theorem 3. Let a, b E Z such that a2 + 4b - 8 is not the square of an integer, 
2a2 + 9b - 23 :& 0, a2 + 5b - 16 :& 0, 2a2 + 7b - 11 :& 0, a2 + 3b - 4 :& 0 and b = 6 

2 or a + 4b-8 t b-6. Let y = Xl + X2E + X3c + X4aE be such that 2[Ky] = 0. Then 
there exists a solution (u, v) C 22 of the Thue equation 

(3) v4 -av3u-bu2v2 + avu3 + U4=i 

such that (X2, X3, X4) = (U2 v2 _ 2 - auv, uv). The converse is also true. 

The elements 'y, 6 C (9 are called equivalent, denoted by 'y 6, if 'y + 6 or y -6 

belongs to Z. It is clear that if -y 6, then IDK/Q(Y)I = IDK/Q(6)1 and they have 
the same index corresponding to 0. From Theorems 1 and 3 we deduce 

Theorem 4. Let b = 1 a > 4. Then every element -y C (9 such that 2[-y] = (9 is 
equivalent to some element 'y = Y2a + y3a 2 +y4a3 with 

(Y2, Y3, y4) C {(1, 0, 0), (1, a,-1), (a, a- 1,-1), (a,-a-1,1), 

(1, O,-1), (1, -a(a2 + 1),a2)} 

except when a = 4, in which case 

(Y2, Y3, y4) E{(1, 0, 0), (1, 4, -1), (4, 3, -1), (4, -5,1), (1, 0, -1), 
(1, -68,16), (209,140, -49), (209, -352, 64)}. 
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Remark. The order 00a.1 often is the maximal order of 1Ka. I In the range 4 < a < 
1000 we found 471 values for which this is true. For a = 4,5 and 8 we compared 
the result of Theorem 4 with the table of Gaal, Petho and Pohst [2, 3]. (For other 
values this is not possible because either 00,1 is not maximal or the discriminant 
of Ka.1 is too large.) For a = 4 and 5 the results are the same, although they 
computed only the small solutions of the corresponding index form equations. For 
a = 8 their method is not applicable because the class number of the quadratic 
subfield (Q(1-5)) of 1K81 is not 1. 

2. PREPARATIONS TO THE PROOF OF THEORE.NM 1 

In ??2-4 we shall use the notation (v, ai, a2, a3, 63) of Petho [8]. We refer to the 
equations and statements of that paper by (P.n.m) and statement P.n.m, respec- 
tively. Since Theorem 1 was proved for a < 100 in [8], we assume a > 100. Denote 
by ca the largest and by 3 the second-largest real zeros of p(x) = pa(x, 1), and put 

We first establish more precise estimates than those proved in [8]. Using Taylor's 
formula at the point a, we get 

(4) a- 2 < a < a 1- 

Since E = 2(a + a2 - 4) [note that E is the largest root of the polynomial X2 - 

aX + 1], using the development of (1 + u)1/2, we see that 

(5) 1 2 1 1 
(5) a - I- - < ? < a--- - 

a a3 a a3 

If E' = '(a - a)2-4) is the conjugate of c, then c' = E - -3. Hence, /3 
-2 + 1 ? -'2/4. This formula, the relation c' = a-c and (5) lead to the inequalities 

(6) 2 a + 2+ 52 < ,< 1 + 
2a 3a2 

Using the estimates above and the inequalities - < log(1 + )<, which are 
true for x > 1, we get 

< logo < - + 2 
2a 2a 3a2 

log a - 
3 

< log c < log a, 

logs < loga- 2 [since log(1-x) < -x for 0<x < 1], 

c+?1 2 2 F.11?x x3 x5 
log <--F-- log =X + - + - + for 0 < x <1 

a -1I a a3 [ 21 -x 3 5 
+1 2 2 4a 5 8 

/3-1 =1? _1 >l?+ l - =1?+ 2 >4a23+5a 

/ 31 5 
log31 >log 4a- ha. 
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We also need an estimate for A, the regulator of [aj]: 

A = log a log p? log 0 log + 

(7) > (loga-4) (log4a_ 5 ) - (i1a+_3 ) (2 2 ) 

> loga x 2log4a )- ' 

and also 

A > logE x log - 1. 

Put K1 = a3- a1 and K2 = a1 + a3 + 2a2. Then by (P.5.16), (4), (5) and by 

63 < 
2 

log1 log 3 

we get (in case I) 

K< 2 logelog3 + 2 l a?+ 1 lo 
A A a -i 

(8) < 2 ~~~log e log3 ( 2.001 
(8) <2 4A ( aloge) 

(I + 1)(V + a) 1.02v 
a log 4a a log 4a 

Since in Lemma P.5.4 we found all solutions of (1) with a1 a3, we may assume 
K1 > 0, hence 

(9) (1 ?2-) (v + ) > alog4a [and a > 100 implies v > 600], 

which is stronger than (P.5.18). By (P.5.15), we also have 

-K< 2v g Ag1 + 1.261 < 2v + 1. 

We shall use these estimates to find all type-I solutions. 
For type-II solutions we may assume, by Lemma P.6.4, that K2 > 2. Then, by 

(P.6.12) and (7) we have 

log e log -1 log E log +1 4v(1 +) 
(10) 1?K2-1?2v ~~A Q- 2log(4a) ? 1 a log 4a 

Thus, in this case 

(11) K1}+ 
I 

v > 4 [and a > 100 implies v > 150], 

which is an improvement of (P.6.15). By (P.6.13), we have 

log e log " 1 

IK1 < 2v Ao 
- 1 + 1. 

In [8], it is proved that 

(12) Al = log 
+I 

+ (K2-1) log ? + K, log 
+ 
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satisfies IA1I < - 2, in case I, and that 

(13) A2 =log 10 +?(I 2 - 1) log a + K, log 1 

satisfies JA21 < 1.1-2, in case II. To prove Theorem 1, we shall use lower bounds 
for these linear forms in logarithms of algebraic numbers. We write also 

A/ = Al = log {a3 1) } + (K2 -l)log10 

and 

A'2= A2=log { 9 
aK2 -1 } + 1 log + 

Now we estimate the absolute logarithmic height of the algebraic numbers occurring 
in Ai, for i = 1 and 2. We have 

h (a) = h() 1 log lol < log(a + 1) 
44 

h(a + 1) = ti(O + 1) log 41l(c+ 1)+ ')1 < log(2a+4) 

h(a- 1) = h(o? - 1) = ( log? 1)( -o 1)(,3? - -) < g1) K4) 4 

h(+) = h (+) < log(4a+8) 

h + 1) < l?og(a2 - 4) + I 
log a+ 2 < 2log(a 3) 

4 ~4 a -1I-_< 2 

Thus, 

(14) ~h {aB + I (/3 + I ) } < log(a + 3) + K, log(4a + 8) 
(14) 

- 24 

<(KI + 2) log(4a + 8) 

and 

(15) Jl { a3 2 t+IJK2 } < log(a + 3) + (K2 - 1) log(a + 1) 

(K2 + 1) 
log(a + 3) 

In a first version of the present paper, we applied the main theorem of [7] to A', 
and A' to find an upper bound of a in terms of v. Since that time, a new result 
was proved by Michel Laurent (see [11]). After a second version of this paper, this 
result was improved by Laurent, Mignotte and Nesterenko (see [12]). This second 
result is the following. 

Proposition 1. Let a, and (X2 be two real algebraic numbers multiplicatively in- 
dependent. Consider the linear form 

A = b2 log9a2 - b log a, 
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where b1 and b2 are positive rational integers. Put D = [Q(al, a2): Q], and let 
A1,A2 be two real numbers > e such that 

h (ali) < log Al,, i = 1, 2, 

and let B be a real number such that B > 1 + log b', where 

bl bi b2 
D logA2 D logAl 

Then, if DB > 21, we have 

log JAI > -25D4B2 log Al log A2. 

Now we want to bound a, and we assume a > 106. Here, with the notations of 
Proposition 1, we can choose 

log A1 = (( a ) ?2) (4a logA2 = log(a + 1) 

with K= K1I in case I, and 

log A= (I ( 1)+ log(a + 3) logA2 - log(4a + 8) 

with K = JK2 in case II. In case I, 

8b< K2~ ? 1 4(2v?+1) ??a1 
log Al log A2 - 

(lg 4 + 2) log(4a + 8) 

thus (taking B = 1 + log(a + 1), so that DB > 21 since D = 8) 

2vlogE < 25 x D4 x log A1 x logA2 x (1 + log(a + 1))2. 

Using (5) and dividing by log(a + 1), we get 

(16) 1.999v < 6400 x log(4a + 8) x 1.02v + 2) x ( + log(a + 1))2 

Using (9) and multiplying each side of (16) by a/v, we get 

a < 9715 x (1 + loga)2, 

which implies 

a < 2.4 x 106. 

Moreover, it is easy to verify that relation (16) leads to the following implications: 

a > a* =106 O0.59v < 12800 x log(4a + 8) x (1 + log(a? 1))2 v < 108. 

In case II, 

__K_ 4(2v?+1) ??a1 
8b'=- ?- + K <2 

logAl logA2 ( 4v + 2) log(4a + 8) 
a log 4a 

thus 

2vloge -0.1 < 25 x D4 x logA1 x logA2+ (1 + log(0.25a + 1))2. 

Proceeding as before, we have 

(17) 1.999v < 6400log(4a + 8) ( 4lva + 2 (I + log(0.25a + 1))2. 
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Now, using (11), we get 

a < 38800 x (1 + log(a/4))2, 

which implies 

a < 9.6 x 106. 

Moreover, relation (17) leads to the following implications: 

a > a**,:= 4 x 106 z> 0.59v < 12800 log(4a + 8)(1 + log(0.25a + 1))2 z4_ V < 108. 

Now we come back to the hypothesis a > 100 and we use a result of Waldschmidt 
[10] to find an upper bound for v for the remaining values of a. Thus, we assume 
a < a* in case I, respectively a < a** in case II. For the convenience of the reader, 
we recall Waldschmidt's result. 

Proposition 2. Let a1, ... , an be nonzero algebraic numbers; for i = 1,.. . , 

let logaGi be a determination of the logarithm of ai. Suppose that the numbers 
log 109,... ,log an are ?Q-linearly independent. Put 

D = [(Q(cal, ,can): Q] and g = [R(log a,.... Ilog19n): R]. 

Let A1 ... I An, A, E and f be positive real numbers such that 

logA,>h((ai) (1?i< n), A=max{Al,.. ,An} 

and 

e < E < min A, D An 
D nD 

( log A, 

Let bl, .. , bn be rational integers with bn :8 0. Put 

M=max ? bl+ 
lj 

1<jX<n L log Aj log An } 

Zo = max {7+31ogn, log E, log (D GE)}, o = max{4nZo, logM} 

and 

Uo = max{D2 log A, Dn+2 Go Zo log A1. log An (log E)> }. 

Then the linear form 

A = b, log 1, + + bn log0 n 

satisfies 

JAI > exp {-1500gn-222Tnn3n+5 (I + 9> uo} 
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Recall that 100 < a < a* (respectively, 100 < a < a**). With the notations of 
Proposition 2, we can set for both linear forms A1 and A2 

n = 3, D = 8, g = 1, 

cal3? +1 f3 in case I, J3 (3 + 1)/(/3-1) in case I, 
a -$ l ?a in case II, l(at + 1) /( c- 1) in case II, 

logA,- log(a + 3) logA2 = 
log(4a + 8) logA3- log(a + 1) 

2 4 4 4 

f = 0.656, l:=oE g li < 4.02, E = 24/(fE) > 9.1, 

41K3 I 41K2-11 < 8.04v/log(a+1) incaseI, 
log(4a + 8) log(a + 1) L8.04v/ log(4a + 8) in case II, 

and get 

log lAiI > -3.275 x 1013 x G( x (log(a + 2))2 x log(4a + 8) for i = 1,2, 

where 

G( = max{ 123.55, log AI}. 

Comparing this last inequality with (12) and (13), we get 

2v logE < 3.2755 x 1013 x Go x (log(a + 2))2 x log(4a + 8), 

since logE > log a - .00la-2 > 0.9956 log(a + 2). This implies 

v < 1.646 x 1015 x G( x log(a + 2) x log(4a + 8). 

In case I, this gives the estimate 

v < 4.81 x 10 19 

whereas in case II, we obtain 

v < 5.71 x 1019. 

3. DIOPHANTINE APPROXIMATION PROPERTIES OF NONTRIVIAL SOLUTIONS 

The following lemma is basic for the final computer search for nontrivial solu- 
tions. We denote by llxll the distance of the real number x to the nearest integer. 

Lemma 1. Suppose that 100 < a < 107. Put 

log -- log Q 
= , respectively 61= l 

log3 log1 

and 

log 3___1 

62 respectively 62 lga+ 
- log log a- 

Assume that 81 and 62 are rational numbers such that 

- l -50 10-57 for a < a* resp. a < a**, (18)6i -6/3 i0~ 62- 62 K e = ~i050 for a > a* resp. a > a**, 
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and assume that there exists a convergent p/q in the continued fraction expansion 
of 61 (respectively, of 62) such that 

(19) q < 1028 

and 

(20) qjjq6j fl > 5.4 x 1 0' respectvely qjjq2> 2.6 x 102 
a log 4a 'rsetvl a log 4a 

Then (12), respectively (13), cannot hold for K1, K2 C 2. 

Proof. First consider case I. Assume that there exist K1, K2 C Z which satisfy (12). 
By (9), we have v > 600, hence 

161 + K1?62 + (K2 - 1)1 < 10-1000. 

Let p/q be a convergent of 62 which satisfies (19) and (20). Multiplying the previous 
inequality by q and inserting 61 and 62,we get 
(21) 

qj + ?q(I -8 1) + K, (62q-p) + Kjq(62 -62) + Kip + (K2 - 1)qj < 10-950 
thus 

Iq68 11 < I + qlO-( + qlKl 1C2 + IK, I 182q - P 

and 

(22) qjjq6j 11 < 10- + q2O + q2 K, 12 + IK1 I x q - 2q-p 

< 106 + (1 + 1056c2)IK 1. 

If a > a*, we know that v < 108 and we assume 62 = 10-5t); if 100 < a < a*, we 
assume 62 = 10-57 and we use the upper bound v < 4.81 x 1019. Then, using (8), 
we see that 

qjqj 
11 < 

5.4 x 1019 
a log 4a 

which contradicts (20). This contradiction proves the lemma in the first case. 
The proof is similar in the second case. We only give a few details. Assume first 

that there exist KI, K2 E Z which satisfy (13). By (12), we have v > 150, hence 
now 

161 + (K2 - 1)62 + Ki < 10-200. 

Let p/q be a convergent of 82 which satisfies (19) and (20); then 

(23) jq68 + q(61 - 61) + (K2 - 1) (62q - P) 

+ (K2 - 1)q(62 - 82) + Klq + (K2 - l)pI < 10-15(, 
thus 
(24) qjjq8j 11 < 1010+ + q2io550+ q2 K2 - 

1162 + K2 - 11 x qj82q - P 

< 106 + (1 + 105662)jK2 - 11i 

If a > a**, we know that v < 108 and we assume 62 = io0-5; if 100 <a<a**,we 
assume 62 = 10-57 and we use the upper bound v < 5.71 x 1019. Then, using (10), 
we see that 

qjjqljjj < 
26 x 1020 

a log 4a 
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which contradicts (20). This contradiction proves the lemma in the second case. O 

Remark. We are extremely grateful to the referee who noticed a mistake in the 
statement of this lemma in the first version of this paper. 

4. THE COMPUTER SEARCH 

First, we notice that in ?2 we tried to use the present theory of linear forms as 
much as we could. This choice leads to some complications (namely the introduction 
of the values a* and a**), but it has the advantage of reducing the computer work. 
Reducing the computer work saves some computer time (which is very large here), 
and, more importantly, the reliability of our result seems to be better. 

For safety's sake, in case I we considered the range 100 < a < 108, and in case 
II the range 100 < a < 4 x 108. 

For evaluating approximately 108 (resp. 4 x 108) equations, we decided to use 
distributed computation. We wrote a program which for a = 101 to 108 (resp. to 
4 x 108) executed the following steps: 

(1) Compute 61 and 62 with sufficient precision: 100 digits for 100 < a < 105, 
60 digits for 105 < a < a* (resp. 105 < a < a**), and 50 digits in the range a > a* 
(resp. a > a**). 

(2) Compute the continued fraction expansion of 62. 

(3) Compute the sequence {qm}m>o of the denominators of the convergents of 62. 
(4) if (20) holds for some qn < 1028, then continue with the next value for a 

else remember a and try again later with higher precision. 
The necessary computer programs are implemented in C. They use the library 

of the computer algebra system PARI for the higher-precision computations. Our 
experiments showed that PARI in this case is 10 times faster than MAPLE V. 
Furthermore, we used the LiPS system [1] to distribute the computations over a 
local network of SUN Workstations (Sparc Stations). 

First we did our search for a E [100, 105] with 100-digit precision. Then we 
considered the range 105 < a < a* (resp. 105 < a < a**), with a precision of 60 
digits. The remaining interval [a*, 108] (resp. [a**, 4 x 108]) was divided into blocks 
of length 105. These intervals were distributed by LiPS over 40 machines of the local 
Ethernet of the Universitat des Saarlandes. The programs on each workstation did 
the search and collected the undecided cases. 

Altogether the computations took 
* about 1800 MIPS-days for type I, 
* about 5300 MIPS-days for type II. 

The real time was about 3 weeks. For every 100 < a < 108 (resp. < 4 x 108) we 
found a q with (20). This completes the proof of Theorem 1. 

Remark. As we mentioned in the introduction, the method described in ??2-4 is 
also applicable for the complete resolution of other parametrized families of dio- 
phantine equations. Indeed, suppose that it is possible for a parametrized family 
of diophantine equations to derive finitely many inequalities of the form 

0 < I log 68 (a) + K, log 81 (a) + K2 log 62 (a) I < cl exp(-c2K), 

where K = max{IK,j, IK2I}. If we also can prove K > c3aloga, then we get an 
upper bound Bo for K as described in [8]. This implies jai < B1 with a suitable 
B1. If moreover IK1I must be less than IK21, then using a convenient theorem on 
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linear forms in two logarithms in algebraic numbers we can, like in ?2, derive a 
much better bound B2 for lal. 

All the examples treated in [4, 6, 8] fulfill the conditions above. Obviously, 
Lemma 1 does not depend on the special choice of 61 and 62. Finally, if B2 is 
reasonable, then one can perform the computer search described in this section. 

5. THE GENERAL INDEX FORM EQUATION OF Oa,b 

Let a,?,K and ( be the same as in ?1. Then 

Lemma 2. The elements 1, ?, a, a6 form an integral basis of (9. 

Proof. We have 

? = a - - - a + (1 -b)a-aa2 + a3 
a 

and 

a~~~~~ C>? -1 + ak 

hence 

(I, a a66)T = 0 1 0 ) (1, a a2 a3)T 

a I1-b -a 1, 

which proves the assertion. 0 

Assume that [1K: Q] = 4. Then f(a) 0 O implies that - '- is a zero of f(x). 
Let /3 denote one of the zeros of f(x) which is different from a and -a-. In the 
sequel we order the conjugates K(),i 1,2,3,4, of 1K such that ao(') a, ao(2) - 

-a 1, aC(3) - 3X ')= ai-0. This implies E(1) - ?(2) = ? and ?(3) -(4) - ? X 
where r' denotes the conjugate of ? with respect to the extension Q(e)/Q. We denote 
by Do the discriminant of the order (9 and by D(y) = DK/IQ(y) the discriminant of 
the element -y e1K. Then 

(25) Do =(6_6/)4 (a+_) ) + la2 + 4(b-2)]2((b + 2)2 + 4a2). 

For 7y c (9, let Ia denote the index of -y in (9. Then we have the well-known 
identity 

(26) D(Qy) - 1]2Do. 

In the next lemma we transform the index form equation corresponding to (9 to a 
system of quadratic equations. 

Lemma 3. Let -y X1 + X26 + X3a + X4ae E ( with index Ly. Then there exist 
integers h1, '2, V with the following properties: 

(27) 1112 = Ty, 

(28) x32 + aX3X4 + (2-b)x = I-, 

(29) x2 +?X2X3 +ax2x4 + (b-2)x4 V 

and 

(30) (a2 + 4b-8)V2 + (b-6)I1V-I_12 12. 
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Proof. Put (lj = i ) for 1 i, j < 4. Then we can rewrite (26) as 

(31) D /2Q-y) y ]J Dj 1/2 

1<i<j<4 

Let L Q(' + 3); then, since ' + ( is a zero of the quadratic polynomial x2 - 

(b - 2)x - (a2 + 2b), we have [L: Q] 1 or 2. Moreover, and this is the important 
fact, 1..1Y2. 3 is the conjugate of 7Yl;372A with respect to L. Using this observation, 
we can show by a straightforward computation that 

D1/2Qy) (+ ) ( -I- U [(- 1)2 V- (2- - i) U] 

X [(E - 6)2V -2 +a3 +- U)] 

where 

U = x-2 + axjx4i + (2 - b)x2, V x 2+ X2X3 + aX2X4 + (b - 2)x . 

We can sinmplify further the form of D1/2(y) and finally get 

D (-Y) - (E- ) (a + I) (-3 + UV (b - 6)UV- U2]. 

Inserting this equaiity and (25) into (31), we get the identity 

U = U 2 + 4b - 8)V2 + (b - 6)UV - U2]. 

As both factors on the right-hand side are integers, setting 

U = I1 and (a2 + 4b - 8)V2 + (b - 6)UV - U2 = 12 

proves equations (27) to (30). 

6. PROOF OF THEOREMS 3 AND 4 

Proof of Theorem 3. Since a2 + 4b - 8 is not a square, [KlR Q] 4. It is well known 
that for y C () the powers 1, -y, -y ly3 form a basis of 0 if and only if jI .= 1; thus 
we can use Lemma 3. Then ll I 1I21 = 1 by (27). 

Assume that (30) holds with V C Z, 11,12 E {1,-1}. We may assume that 
11 = 1, because if V C Z is a solution of (30) for I1 -1, then -V C Z is also a 
solution for Ii = 1. 

Let 12 = 1; then V12, hence V C {-2, - 1,1 , 2}, but all values of a, b which would 
satisfy (30) for V C {-2, -1, 1, 2} are excluded in the assumptions of the theorem. 

Let 12 = -1. Then either V = 0 or (a2 + 4b - 8)V + (b - 6)II = 0. The second 
alternative is excluded in the assumptions too; therefore, V = 0. Since V = 0, we 
can rewrite (29) as 

(32) x2(x2 + (x;- + ax-)) = (2 - b)x 2. 
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On the other hand, (28) implies that (X3 + aX4, (2 - b)X2) = 1; thus (x2, x2 + 
(X3 + ax4))-1 holds too. Therefore, there exist integers b1, b2, u, v such that 

(U,V) - 1, 

b1b2 = 1, 

UV - ?4, 

- ~~~~~~~X2 =- blu2, 
?2 -~~~~ 

X2 + X3 + aX4 = b2v2 

The second equation implies b1 = b2 = :1. Using this and the last three equations, 
we express XI, X2, X3 and X4 in terms of u and v. Then, inserting this expression in 
(28), we get (3). D 

Proof of Theorem 4. Let -y E (9 such that Z (9. Up to equivalence, and in view 
of Lemma 2, we may suppose that -y X26 + X3a + X4aE with x2 > 0. It is 
easily checked that all the conditions of Theorem 3 (with b = 1) hold; therefore, 
(X2,X3?X4) = (ut21 2 _ -2 _auv,uv), where (x,y) = (v,u) is a solution of (1). 
(Note that, by Theorem 1 of [8], fJ, (x, y) = -1 is impossible). Theorem 1 gives 
explicitly all possible values for (v, u), which are inserted to the expression for 
x2, X3, X4 above. Then, on writing X26 + X3a + X4aE = YI + Y2ca + y3a + y42%3 we 
see that, up to equivalence, the only possibilities for (Y2, y3, y4) are those announced 
in Theorem 4. D 
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